Search results for "Penning traps"
showing 8 items of 8 documents
Improved limit on the directly measured antiproton lifetime
2017
Continuous monitoring of a cloud of antiprotons stored in a Penning trap for 405 days enables us to set an improved limit on the directly measured antiproton lifetime. From our measurements we extract a storage time of $3.15\times {10}^{8}$ equivalent antiproton-seconds, resulting in a lower lifetime limit of ${\tau }_{\bar{{\rm{p}}}}\gt 10.2\,{\rm{a}}$ with a confidence level of $68 \% $. This result improves the limit on charge-parity-time violation in antiproton decays based on direct observation by a factor of 7.
Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP
2019
The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…
Demonstration of the double Penning Trap technique with a single proton
2013
Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach effect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more. Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the cont…
Simulation studies of the laser ablation ion source at the SHIPTRAP setup
2020
Hyperfine interactions 241(1), 46 (2020). doi:10.1007/s10751-020-01708-0
Image charge shift in high-precision Penning traps
2019
An ion in a Penning trap induces image charges on the surfaces of the trap electrodes. These induced image charges are used to detect the ion's motional frequencies, but they also create an additional electric field, which shifts the free-space cyclotron frequency typically at a relative level of several ${10}^{\ensuremath{-}11}$. In various high-precision Penning-trap experiments, systematics and their uncertainties are dominated by this so-called image charge shift (ICS). The ICS is investigated in this work by a finite-element simulation and by a dedicated measurement technique. Theoretical and experimental results are in excellent agreement. The measurement is using singly stored ions a…
High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL
2019
An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an $^{36}\mathrm{Ar}$ beam on a $^{\mathrm{nat}}\mathrm{Ni}$ target. It was used together with the JYFLTRAP double Penning trap to measure the masses of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}, ^{86}\mathrm{Mo}, ^{88}\mathrm{Tc}$, and $^{89}\mathrm{Ru}$ ground states and the isomeric state $^{88}\mathrm{Tc}^{m}$. Of these, $^{89}\mathrm{Ru}$ and $^{88}\mathrm{Tc}^{m}$ were measured for the first time. The precision of measurements of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}$, and $^{88}\mathrm{Tc}$ was significantly improved. The literature value for $^…
The performance of the cryogenic buffer-gas stopping cell of SHIPTRAP
2018
Direct high-precision mass spectrometry of the heaviest elements with SHIPTRAP, at GSI in Darmstadt, Germany, requires high efficiency to deal with the low production rates of such exotic nuclides. A second-generation gas stopping cell, operating at cryogenic temperatures, was developed and recently integrated into the relocated system to boost the overall efficiency. Offline measurements using 223Ra and 225Ac recoil-ion sources placed inside the gas volume were performed to characterize the gas stopping cell with respect to purity and extraction efficiency. In addition, a first online test using the fusion-evaporation residue 254No was performed, resulting in a combined stopping and extrac…
High-precision mass measurements for the isobaric multiplet mass equation atA= 52
2017
Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been d…